Pseudomonas putida: An Environment Friendly Bacterium 143
Santos, C. N. S. and G. Stephanopoulos. 2008. Combinatorial engineering of microbes for optimizing cellular
phenotype. Curr. Opin. Chem. Biol. 12(2): 168–176.
Sauer, U. 2001. Evolutionary engineering of industrially important microbial phenotypes. Metab. Eng. 73: 129–169.
Schettgen, T., U. Heudorf, H. Drexler and J. Angerer. 2002. Pyrethroid exposure of the general population-is this due
to diet. Toxicol. Lett. 134(1-3): 141–145.
Schmack, G., V. Gorenflo and A. Steinbüchel. 1998. Biotechnological production and characterization of polyesters
containing 4-hydroxyvaleric acid and medium-chain-length hydroxyalkanoic acids. Macromolecules. 31(3):
644–649.
Serdar, C. M., D. C. Murdock and M. F. Rohde. 1989. Parathion hydrolase gene from Pseudomonas diminuta MG:
Subcloning, complete nucleotide sequence, and expression of the mature portion of the enzyme in Escherichia
coli. Nat. Biotechnol. 7(11): 1151–1155.
Sharma, B. and P. Shukla. 2022. Futuristic avenues of metabolic engineering techniques in bioremediation. Biotechnol.
Appl. Biochem. 69(1): 51–60.
Shelton, D. R. and C. J. Somich. 1988. Isolation and characterization of coumaphos-metabolizing bacteria from cattle
dip. Appl. Environ. Microbiol. 54(10): 2566–2571.
Shen, Y. J., P. Lu, H. Mei, H. J. Yu, Q. Hong and S. P. Li. 2010. Isolation of a methyl parathion-degrading strain
Stenotrophomonas sp. SMSP-1 and cloning of the ophc2 gene. Biodegrad. 21(5): 785–792.
Silambarasan, S., P. Logeswari, A. Ruiz, P. Cornejo and V. R. Kannan. 2020. Influence of plant beneficial
Stenotrophomonas rhizophila strain CASB3 on the degradation of diuron-contaminated saline soil and
improvement of Lactuca sativa growth. Environ. Sci. Pollut. Res. Int. 27(28): 35195–35207.
Simon, O., I. Klaiber, A. Huber and J. Pfannstiel. 2014. Comprehensive proteome analysis of the response of
Pseudomonas putida KT2440 to the flavor compound vanillin. J. Proteomics. 109: 212–227.
Singh, P. K. 1973. Effect of pesticides on blue-green algae. Arch. Mikrobiol. 89(4): 317–320.
Singleton, D. R., L. Guzmán-Ramirez and M. D. Aitken. 2009. Characterization of a polycyclic aromatic hydrocarbon
degradation gene cluster in a phenanthrene-degrading Acidovorax strain. Appl. Environ. Microbiol. 75(9):
2613–2620.
Song, F., Y. Shi, S. Jia, Z. Tan and H. Zhao. 2018. Advances of naphthalene degradation in Pseudomonas putida ND6.
Front. Bioeng. Biotechnol. 944(1): 20074.
Soni, M. G., S. L. Taylor, N. A. Greenberg and G. A. Burdock. 2002. Evaluation of the health aspects of methyl
paraben: a review of the published literature. Food Chem. Toxicol. 40(10): 1335–1373.
Stark, B. C., K. R. Pagilla and K. L. Dikshit. 2015. Recent applications of Vitreoscilla hemoglobin technology in
bioproduct synthesis and bioremediation. Appl. Microbiol. Biotechnol. 99(4): 1627–1636.
Steinbüchel, A. and S. Hein. 2001. Biochemical and molecular basis of microbial synthesis of polyhydroxyalkanoates
in microorganisms. Adv. Biochem. Eng. Biotechnol. 71: 81–123.
Tang, J., B. Liu, T. T. Chen, K. Yao, L. Zeng, C. Y. Zeng and Q. Zhang. 2018. Screening of a beta-cypermethrin
degrading bacterial strain Brevibacillus parabrevis BCP-09 and its biochemical degradation pathway.
Biodegrad. 29(6): 525–541.
Tiso, T., P. Sabelhaus, B. Behrens, A. Wittgens, F. Rosenau, H. Hayen and L. M. Blank. 2016. Creating metabolic
demand as an engineering strategy in Pseudomonas putida–Rhamnolipid synthesis as an example. Adv.
Energy Sci. Environ. Eng. 3: 234–244.
Tomasek, P. H. and J. S. Karns. 1989. Cloning of a carbofuran hydrolase gene from Achromobacter sp. strain WM111
and its expression in gram-negative bacteria. J. Bacteriol. 171(7): 4038–4044.
Tran, N. H., T. Urase, H. H. Ngo, J. Hu and S. L. Ong. 2013. Insight into metabolic and cometabolic activities of
autotrophic and heterotrophic microorganisms in the biodegradation of emerging trace organic contaminants.
Bioresour. Technol. 146: 721–731.
Turnbull, G. A., J. E. Cullington, A. Walker and J. Morgan. 2001. Identification and characterisation of a diuron
degrading bacterium. Biol. Fertil. Soils. 33: 472–476.
Unger, B. P., I. C. Gunsalus and S. G. Sligar. 1986. Nucleotide sequence of the Pseudomonas putida cytochrome
P-450cam gene and its expression in Escherichia coli. J. Biol. Chem. 261(3): 1158–1163.
Vague, M., G. Chan, C. Roberts, N. A. Swartz and J. L. Mellies. 2019. Pseudomonas isolates degrade and form
biofilms on polyethylene terephthalate (PET) plastic. bioRxiv. p: 647321.
van Hylckama Vlieg, J. E., L. Tang, J. H. LutjeSpelberg, T. Smilda, G. J. Poelarends, T. Bosma, A. E. van Merode, M.
W. Fraaije and D. B. Janssen. 2001. Halohydrin dehalogenases are structurally and mechanistically related to
short-chain dehydrogenases/reductases. J. Bacteriol. 183(17): 5058–5066.
Verma, A., K. Dhiman and P. Shirkot. 2016. Hyper-production of laccase by Pseudomonas putida LUA15. 1 through
mutagenesis. J. Microbiol. Exp. 3(1): 00080.